Translation Memories Enrichment by Statistical Bilingual Segmentation
نویسندگان
چکیده
A majority of Machine Aided Translation systems are based on comparisons between a source sentence and reference sentences stored in Translation Memories (TMs). The translation search is done by looking for sentences in a database which are similar to the source sentence. TMs have two basic limitations: the dependency on the repetition of complete sentences and the high cost of building a TM. As human translators do not only remember sentences from their preceding translations, but they also decompose the sentence to be translated and work with smaller units, it would be desirable to enrich the TM database with smaller translation units. This enrichment should also be automatic in order not to increase the cost of building a TM. We propose the application of two automatic bilingual segmentation techniques based on statistical translation methods in order to create new, shorter bilingual segments to be included in a TM database. An evaluation of the two techniques is carried out for a bilingual Basque-Spanish task.
منابع مشابه
Toward Better Chinese Word Segmentation for SMT via Bilingual Constraints
This study investigates on building a better Chinese word segmentation model for statistical machine translation. It aims at leveraging word boundary information, automatically learned by bilingual character-based alignments, to induce a preferable segmentation model. We propose dealing with the induced word boundaries as soft constraints to bias the continuous learning of a supervised CRFs mod...
متن کاملImproving Patent Translation using Bilingual Term Extraction and Re-tokenization for Chinese-Japanese
Unlike European languages, many Asian languages like Chinese and Japanese do not have typographic boundaries in written system. Word segmentation (tokenization) that break sentences down into individual words (tokens) is normally treated as the first step for machine translation (MT). For Chinese and Japanese, different rules and segmentation tools lead different segmentation results in differe...
متن کاملCollocational Translation Memory Extraction Based on Statistical and Linguistic Information
In this paper, we propose a new method for extracting bilingual collocations from a parallel corpus to provide phrasal translation memories. The method integrates statistical and linguistic information to achieve effective extraction of bilingual collocations. The linguistic information includes parts of speech, chunks, and clauses. The method involves first obtaining an extended list of Englis...
متن کاملPre-processing of Bilingual Corpora for Mandarin-English EBMT
Pre-processing of bilingual corpora plays an important role in Example-Based Machine Translation (EBMT) and Statistical-Based Machine Translation (SBMT). For our Mandarin-English EBMT system, pre-processing includes segmentation for Mandarin, bracketing for English and building a statistical dictionary from the corpora. We used the Mandarin segmenter from the Linguistic Data Consortium (LDC). I...
متن کاملUnsupervised Bilingual Morpheme Segmentation and Alignment with Context-rich Hidden Semi-Markov Models
This paper describes an unsupervised dynamic graphical model for morphological segmentation and bilingual morpheme alignment for statistical machine translation. The model extends Hidden Semi-Markov chain models by using factored output nodes and special structures for its conditional probability distributions. It relies on morpho-syntactic and lexical source-side information (part-of-speech, m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004